报告题目:The cyclotomic Brauer category
报告时间:2023年10月23日下午16:30-17:10
报告地点:X30425
报告人:芮和兵(同济大学)
摘要:Affine Brauer category Aℬ is a linear monodical category over an algebraically closed field with characteristic different from 2. Let A be the path algebra associated with the quotient category Cℬ of Aℬ called the cyclotomic Brauer category. We prove that the category A-lfdmod of locally finite dimensional left A-modules is an upper finite fully stratified category in the sense of Brundan-Stroppel. In particular, any projective cover of a simple A-module admits a filtration of standard modules with finite length. Let A∆-mod be the full subcategory of A-lfdmod in which each object admits a finite standard flag. We use the Grothendieck group of A∆-mod to categorify certain integral gθ-modules where gθ is the classical limit of (quasi-split) type AIII i-quantum group. This is a joint work with M. Gao and L. Song.
报告人简介:芮和兵,同济大学教授,博士生导师,国家杰出青年基获得者,曾获教育部新世纪人才计划,教育部优秀青年教团队助计划,上海市优秀学科带头人资助计划,上海市自然科学一等奖。芮老师多年来一直从事与李代数、量子群有关的一些结合代数的表示理论研究,在Adv. Math., Trans. Amer. Math. Soc., Int. Math. Res. Not., J. Reine Angew. Math., Math. Z.等国际著名杂志发表论文40多篇。
窗体底端